Y2x−5 ditransformasikan oleh transformasi yang berkaitan dengan matriks ( 2 3 1 4 ). Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah: Persamaan Bayangan Garis 2y X 3 0 Oleh Transformasi Yg Bersesuaian Dg Matriks 2 3 1 2 Adalah Brainly Co Id from id-static.z-dn.net Pertama cari hasil bayangan dari pencerminan terhadap garis y = x. Matriks pencerminan terhadap garis y = x adalah: Berdasarkan rumus di atas, dapat diperoleh kesimpulan bahwa x' = y dan y' = x. Substitusikan nilai tersebut pada persamaan 3x - y - 11 = 0 sehingga diperoleh persamaan berikut. 3x - y - 11 = 0 3y' - x' - 11 = 0 Transformasi1. M adalah pencerminan terhadap garis x + y = 0. R adalah rotasi sejauh 90 searah jarum jam dengan pusat O. Tentukan matriks transformasi yang bersesuaian dengan R o M ! A 2x + 3y + 5 = 0 D. 3x + 2y - 5 = 0 B. 2x + 3y - 5 = 0 E. 3x + 2y + 5 = 0 C. 2x - 3y + 5 = 0 4. Persamaan bayangan lingkaran 2 2 x 2 y 3 25 oleh rotasi dengan pusat (0,0) sejauh setengah putaran searah dengan jarum jam, dilanjutkan dengan refleksi terhadap garis y = 2 adalah Garisy=2x-5 ditransformasikan oleh transformasi yang bersesuaian dengan matriks baris 1 (2 3) baris 2 (1 4). persamaan bayangan garis tersebut adalah . Question from @Hasnaarifah21 - Sekolah Menengah Atas - Matematika 1 Komposisi Transformasi 1. 2. Setelah menyaksikan tayangan ini anda dapat Menentukan peta atau bayangan suatu kurva hasil dari suatu komposisi transformasi 2. 3. Transformasi Untuk memindahkan suatu titik atau bangun pada sebuah bidang dapat dikerjakan dengan transformasi. Transformasi T pada suatu bidang 'memetakan' tiap titik P pada a Refleksi terhadap titik (0, 0) Pada gambar di atas, bayangan titik yang direfleksikan pada titik O (0, 0). Pada ilustrasi di atas, disimpulkan formula pencerminan terhadap titik O (0, 0) positif dicerminkan berubah menjadi negative dan berlaku sebaliknya. Jika dijabarkan menjadi matriks transformasi, misalkan matriks transformasinya. sehingga. Bayangangaris x - 2y = 5 bila dicerminkan dengan matriks transformasi dilanjutkan dengan pencerminan terhadap sumbu X adalah a. 11x + 4y = 5 d. 3x + 5y = 5. 2 = 0 di cerminkan terhadap garis y = x dilanjutkan oleh transformasi yang bersesuaian dengan matriks . Persamaan bayangannya adalah . a. 3x - y + 1 = 0 d. x - 3y - 2 Teksvideo. Bismika bayangan garis 4 X dikurang Y ditambah 5 = 0 oleh transformasi yang bersesuaian dengan matriks berikut ini kemudian dilanjutkan oleh pencerminan terhadap sumbu y l a untuk mengerjakan soal transformasi kita perlu mengetahui matriks matriks dari transformasi yang diberikan di sini transformasi pertama sudah diberikan oleh matriks yaitu matriks berikut ini kemudian 3. Lingkaran dengan persamaan $(x-1)^2 + (y + 3)^2 = 5 $ dirotasi sejauh $ 135^\circ $ searah jarum jam, kemudian dilanjutkan dengan pencerminan terhadap garis $ y = x + 6 $, setelah itu dilanjutkan dengan translasi sejauh $ \left( \begin{matrix} 12 \\ -10 \end{matrix} \right) $ . Tentukan luas bayangan lingkaran tersebut! Penyelesaian : t4oLNQ. Kelas 11 SMATransformasiTransformasi dengan MatriksGaris lx-3y+3=0 ditransformasikan terhadap matriks 2 -3 -1 2. Hasil transformasi garis l mempunyai persamaan ..Transformasi dengan MatriksTransformasiGEOMETRIMatematikaRekomendasi video solusi lainnya0057Titik B-1, -4 ditranslasikan oleh T=4 -2. Bayangan ti...0340Lingkaran dengan persamaan L=x^2+y^2-6x+4y+7=0 ditranslas...0341Garis dengan persamaan 2 x+y+4=0 dicerminkan terhadap g...0413Bayangan titik A x, y oleh transformasi yang bersesuaia...Teks videoDari soal ini terdapat sebuah garis l yang akan ditransformasikan terhadap matriks berikut. Jadi pertama kita Tuliskan ada x koma Y yang akan ditransformasi oleh sebuah matriks yaitu 2 min 3 min 1 2 menghasilkan sebuah bayangan X aksen aksen jadi untuk mendapatkan X aksen aksen disini = matriks A 2 min 3 MIN 12 jika kita X dengan x y Jadi dengan cara perkalian matriks yaitu 2 * x + 3 x y hasilnya 2 X kurang 3 Y min 1 dikali x + 2 x y hasilnya adalah min x + 2y dari sini kita dapatkan S aksen = 2 x3 Y karena yang kita butuhkan adalah x maka X aksen + 3 Y = 2 X maka X = b / 2 persamaan itu X aksen + 3y 2 selanjutnya untuk y aksen = min x + 2y di sini karena X masih mengandung variabel y maka kita harus substitusi sehingga kita dapatkan y aksen = min x ax + 3 Y / 2 + 2y selanjutnya dapat kita x 2 persamaan sehingga 2 y aksen = min x X kurang 3 y ditambah 2 x 2 yaitu 4 y maka disini kita dapatkan 2 y aksen= min x aksen ditambah y karena yang kita butuhkan y maka = 2 y aksen ditambah X aksen jadi disini kita kembalikan substitusi lagi ya ke dalam X sehingga x = x aksen + 3 x 2 y aksen ditambah X aksen dibagi 2 hasilnya adalah x aksen + 3 x 14 x aksen dibagi 22 X aksen lalu ditambah 3 x 2 y aksen itu namanya aksen / 2 adalah 3 Y aksen dari sini kita substitusi X dan Y ke dalam garis X kurang 3 y + 3 = 0 di sini x adalah 2 x aksen3 G aksen lalu dikurang 3 G yang adalah dua Yayasan + X aksen tambah 3 sama dengan nol terdapat Tuliskan persamaan tanpa tanda aksen secara umum yaitu 2 x + 3 Y min 3 x 2 adalah min 6 y min 3 dikali X min 3 x 3 sama dengan nol selanjutnya 2 X kurang 3 x adalah min x selalu 3 Y kurang 6 y adalah min 3 y + 3 sama dengan nol kemudian kita X min persamaan maka kita dapatkan x + 3 Y kurang 3 = jadi opsi yang tepat adalah pilihan bagian A baik sampai bertemu di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Bayangan garis x-2y=5 bila di transformasi dengan matriks transformasi [3 5] [1 2] dilanjutkan dengan pencerminan terhadap sumbu x adalah... dibantu yaa... Kalau menurut aku amaaf kalau salah Pertanyaan baru di Matematika Tia sedang belajar menunggangi kuda di gunung Bromo,dari pos A dia menuju ke arah Utara sejauh 60m. untuk pergi ke pos B kemudian berbelok ke arah tim … ur sejauh 30m. untuk pergi ke pos c belok ke arah selatan untuk menuju pos D sejauh perpisahan tia dan kuda tersebut jika dihitung dari titik awal hingga akhir ​ Seperti halnya suara yang keluar saat kita berbicara atau berteriak, sinyal WiFi yang keluar dari sebuah Antena Router / Access Point akan semakin l … emah seiring dengan semakin jauhnya sinyal WiFi tersebut. Jaringan WiFi memiliki jangkauan yang dibatasi oleh daya transmisi, jenis antena, lokasi tempat mereka digunakan, dan kondisi lingkungan. Tipikal wireless router untuk keperluan dalam ruangan indoor dengan metode point-to-multipoint yang menggunakan standard b, g, dan ac memiliki jangkauan sekitar 30 meteran dan untuk memiliki jangkauan sekitar 70 meter. Sinyal umumnya tidak akan menembus dinding logam atau beton begitu juga pohon dan dedaunan merupakan penghalang frekuensi yang akan memblokir sebagian atau seluruh sinyal WiFi. Pak dullah akan memasang WiFi IEEE standard dirumahnya yang terletak pada koordinat 10, 10. Dapatkah Ananda menentukan persamaan jangkauan maksimum sinyal WiFi yang dipasang dirumah pak dullah...A Persamaannya x-10² + y-10² = 70B Persamaannya x-10² + y-10² = 30 C Persamaannya x-10²+y-10² = 70² D Persamaannya x-10² + y-10² = 30² EPersamaannya x-10² + y-10² = 10² ​ Perhatikan gambar berikut. Banyak busur kecil pada gambar di atas adalah....​ ikan D gurame umur 2 bulan disajikan tabel distribusi frekuensi berikut. Data ukuran ukuran pandang 7 Paniang MM 30-35 36-41 42-47 48 - 53 54 - 59 Me … dian dari data frekuensi 5 g 8 12 6 dari data tersebut adalah​ Sebuah bak mandi berbentuk balok berukuran panjang 120 cm, lebar 100 cm dan tinggi 80 cm, berisi air setengahnya. Jika ke dalam bak tersebut dimasukka … n 3 buah benda logam berbentuk kubus dengan panjang rusuk 40 tinggi air dalam bak sekarang? Tolong bantuanya... MatematikaGEOMETRI Kelas 11 SMATransformasiTransformasi dengan MatrixPersamaan bayangan garis 3x+5y-7=0 oleh transformasi yang bersesuaian dengan matriks 1 -1 -1 2 dilanjutkan dengan 3 2 2 1 adalah ....Transformasi dengan MatrixTransformasiGEOMETRIMatematikaRekomendasi video solusi lainnya0035Matriks yang bersesuaian dengan refleksi terhadap garis y...0342Pada pemetaan Ax, y->A'y, -x, matriks transformasi ya...0205Bayangan titik 1,-3 jika ditransformasikan oleh matriks...0355Sebuah garis 3x+2y=6 ditranslasikan dengan matriks 3 -4...Teks videosini kita mempunyai soal diketahui garis persamaan bayangan garis tersebut jika ditransformasi pertama oleh matriks 1 min 1 1 2, maka matriks A lalu dilanjutkan dengan matriks 32 21, Saya beri nama matriks B dari sini kita pertama kan masing-masing kan oleh matriks yang sesuai dengan dari x koma Y yang awal ditransformasi oleh mati jadi X aksen aksen maka persamaan 3 = matriks 1 1 1/2 * X = 1Tapi kita tidak usah lagi saja di akhir lalu sekarang kita lanjut ya sen ditransformasikan oleh matriks B jadi Pasar Senaken koma y aksen aksen maka jadi es Aksan Aksan Aksan Aksan = matriks b. 2 21 ini aksen = minta segitu sih makanya 3221 kan aku minta satu sampai dua kali aksi sekarang kita kalikan dulu matriks ya jadi 3 dikali 1 ditambah 2 dikali minus 13 minus 213 dikali minus13 kiri bawah 1 ditambah 1 dikali 12 11 bawah kanan 2 * 1 + 1 * 2 * 0 sekarang rumus invers matriks karena kita ingin mengubah bentuknya menjadi suatu Oleh karena itu dari sini invers matriks dari 1 1 1 0 adalah 11. Tentukan matriks M maka F invers x adalahTentukan satu kali satu kali dinya itu mau 1 - 1, maka = 4 - 1 di sini negatif semua akan jadi 0 1 1 1 matriks invers dari sini Kenapa Kan x = 11 x x aksen aksen = Xsekarang ini garis 3x + 5 y 7 = 0, maka dari masing-masing mendapatkan X yaitu menjadi Yasin Asen Asen Asen Asen Asen sekarang kita hilangkan menjadi persamaan biasa menjadi 3 y ditambah 5 x 5 y 7 = 0 di sini menjadi= 0 maka dari itu jawabannya ini solusinya